Name:	Partner:	PH2223				
	Experiment Sheet for Electric Deflection of Electrons					

1. Record your accelerating voltages: $V_C =$ _____, and $V_B =$ _____.

This results in $V_{acc} =$ _____.

2. Using the 5 suggested deflection voltages in the table below measure the corresponding lateral displacement ($x_{experimental}$) on your CRT screen and record them in the table. Then calculate each theoretical lateral displacements (x_{theory}) and record these values in the table below.

V_{def} (V)	X _{experimental} (m)	x _{theory} (m)
5.00		
10.0		
15.0		
20.0		
25.0		

- 3. Use a separate sheet of graph paper to graph x vs. V_{def} (use the experimental displacement values).
- 4. Calculate and record all of the intermediate values for one of your deflecting potentials (V_{def}) in the table below. Show your sample calculations on the next page.

V _{def} (V)	v_z (m/s)	<i>E</i> (N/C)	$a (m/s^2)$	t_1 (s)	v _x (m/s)	$\begin{array}{c} x_1 \\ (m) \end{array}$	t_2 (s)	x ₂ (m)	x _{theory} (m)

Calculations (show your calculations for the data in the previous table):

Questions:

1. What was the graphical relationship between x and *V*_{def} in your graph? _____

(possible answers include squared, exponential, linear, inverse, logarithmic, ...)

2. From the equation for the theoretical value of x what should have been the graphical relationship between x and V_{def} ?

_____ Is this the same as your answer to number 1? _____

3. Calculate the average value of the deflection sensitivity (displacement per unit deflection voltage) for your CRT. Use your experimental displacement values.

Average deflection sensitivity = _____