Name:______PH2223 -___

Experiment Sheet for Computer-Assisted Measurement of g

Picket Fence data table

∆t (s)	t _{in} (s)	t _{mid} (S)	v (m/s)

Sample Calculations (t_{mid} and v):

Attach graph of v vs. t_{mid} to the back of these pages.

What did you get for your value of gravity (slope of your graph)?

The magnitude of gravity (at sea level) is approximately 9.8 m/s². What is your percent error?

Sample Calculations (slope and %error):

Computer's Analysis:

What did your computer get for the slope of its graph?

What did your computer get for the R-value?

Questions:

- 1. What type of graphical relationship do you think the position vs. time graph made?
- 2. From class what kinematic equation best explains this position vs. time graph?

- 3. Were you able to get fairly constant acceleration by hand?
- 4. You didn't have to get 9.8 m/s² by hand; what did you get? _____